MTH 201: Multivariable Calculus and Differential Equations

Homework V

(Due 22/10)

1. Write an iterated integral for $\iint_{A} d A$ over the region R bounded by:
(a) $y=\tan x, x=0$, and $y=1$.
(b) $y=x^{2}$ and $y=x+2$.
(c) $y=e^{-x}, y=1$, and $x=\ln 3$.
2. Sketch the region of integration and evaluate the following integrals.
(a) $\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} d x d y$.
(b) $\int_{0}^{1} \int_{0}^{y^{2}} 3 y^{3} e^{x y} d x d y$.
(c) $\int_{-\pi / 3}^{\pi / 3} \int_{0}^{\sec t} 3 \cos t d u d t$.
(d) $\int_{0}^{3 / 2} \int_{1}^{4-2 u} \frac{4-2 u}{v^{2}} d v d u$.
3. Sketch the region of integration, reverse the order of integration, and evaluate.
(a) $\int_{0}^{3 / 2} \int_{0}^{9-4 x^{2}} 16 x d y d x$.
(b) $\int_{0}^{\pi / 6} \int_{\sin x}^{1 / 2} x y^{2} d y d x$.
(c) $\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 3 y d x d y$.
(d) $\int_{0}^{2 \sqrt{\ln 3}} \int_{y / 2}^{\sqrt{\ln 3}} e^{x^{2}} d x d y$.
(e) $\int_{0}^{8} \int_{\sqrt[3]{x}}^{2} \frac{1}{y^{4}+1} d y d x$.
(f) $\int_{0}^{1 / 16} \int_{y^{1 / 4}}^{1 / 2} \cos \left(16 \pi x^{5}\right) d x d y$.
4. Find the volume of the region bounded above by the surface $z=f(x, y)$ and below by the region R.
(a) $f(x, y)=y-\sqrt{x}, R$: Bounded by $x \geq 0, y \geq 0$, and $x+y=1$.
(b) $f(x, y)=x^{2}, R$: Bounded by $y=2-x^{2}$ and $y=x$ in the $x y$-plane.
(c) $f(x, y)=\sqrt{4-x^{2}}, R$: The smaller sector cut from the disk $x^{2}+y^{2} \leq 4$ by the rays $\theta=\pi / 6$ and $\theta=\pi / 2$.
(d) $f(x, y)=\frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}}, R:[2, \infty) \times[0,2]$.
5. Compute the volume of the following solids.
(a) The solid in the first octant bounded by the coordinate planes, the plane $x=3$, and the parabolic cylinder $z=4-y^{2}$.
(b) The wedge cut from the first octant by the cylinder $z=12-3 y^{2}$ and the plane $x+y=2$.
(c) The solid that is bounded front and back by the planes $x=2$ and $x=1$, on the sides by the cylinders $y= \pm 1 / x$, and above and below by the planes $z=x+1$ and $z=0$.
6. Evaluate the following improper integrals.
(a) $\int_{1}^{\infty} \int_{e^{-x}}^{1} \frac{1}{x^{3} y} d y d x$.
(b) $\int_{0}^{\infty} \int_{0}^{\infty} x e^{-(x+2 y)} d x d y$.
